
8 The Delphi Magazine Issue 34

Real Time 3D
Developing real time animated 3D graphics with OpenGL
by Ian Ringrose and Joseph Steel

The type of 3D animation nor-
mally seen in films and on TV is

based on the principle that con-
secutive frames are created, drawn
and saved. They are then re-drawn
as part of an overall moving
sequence: a sort of film strip of
stored computer pictures. This
form of animation has the advan-
tage that the graphics can be very
realistic, but is limited in that there
is no real time interaction: you
can’t change things as the anima-
tion sequence happens. The princi-
ple of real time animation means
that the display process is done ‘on
the fly’. As one frame is being dis-
played, the next is being created.
When it is complete the frames are
switched and the process starts
over again. The display can there-
fore be controlled on a frame-by-
frame basis, making real time ani-
mation ideal for applications like
games or simulation training.

To make displayed motion
appear smooth, the frame buffer
normally has to be updated at a fre-
quency of 25 frames per second or
faster. This depends on the appli-
cation: flight simulators may work
at a frequency of 60 frames/sec but
some forms of information graph-
ics update at 5 frames/sec or less.
The key factor with real time
graphics is that there is always a
trade-off between displayed real-
ism and frame update frequency.
Adding realism to the picture
invariably results in a slower fre-
quency. To increase either
requires more efficient software
and/or more processing power.

Development Decisions
A couple of years ago we started
looking at the problem of how to
design a real time 3D graphics
system which would allow the user
to build and display relatively com-
plex 3D scale models. We had
previously been using PCs with
expensive graphics accelerator

cards and hand coded all of the
graphics according to the applica-
tion specification (years of devel-
opment!). The introduction of the
Pentium PC meant that for the first
time an off the shelf PC had the
power to produce detailed imagery
at a reasonable frame update fre-
quency. This, coupled with the
vast improvement in graphics
cards (many having 3D accelera-
tion on-board), allowed us to plan a
development based on the PC.

We selected Delphi because of
its ease of use and it was then the
only Windows development envi-
ronment to offer re-usable compo-
nents. So, the system development
was organized in two parts: the
component part, which provided
an interface to all graphics and
motion control classes, and the
application part, which allowed a
user to build and visualise real
time 3D models.

We realized that by developing
the class interface as a component
it could be used as a programmer’s
tool to develop this application
and other applications which
required real time 3D. In addition
to AiG company projects, the com-
ponent could be marketed to assist
in the development of other prod-
ucts and projects. We decided to
use Silicon Graphics’ OpenGL for
the source 3D programs. This had
originally been adapted for use
with Windows NT and was, at that
time, becoming available for Win-
dows 95. Our task was to provide
an easy to use programming inter-
face with OpenGL and then to use
this to develop the application.

Dave Jewell discussed using
OpenGL with Delphi in Issue 28
(December 1997): a good place to
look for a gentle introduction!

View3D Component
We call our class interface compo-
nent View3D. It comprises Delphi
descendant classes which allow

the programmer to build graphics
realism and motion into a display
without the angst which can result
from making complex library calls.
The programmer instances and
creates objects which inherit the
properties and methods contained
in the View3D classes. These prop-
erties and methods can be
accessed programmatically (at
runtime), or through the Object
Inspector.

A table showing the outline
structure of View3D is given in
Figure 1. The classes fall into two
distinct categories: those which
are designed to provide an inter-
face between a Delphi application
and OpenGL, and those which are
designed to control the position
and motion of constituent 3D
models. The TView3D class has
properties and methods which
simplify access to OpenGL. The
TView3DModel, TView3DReference
and TView3DRoute classes allow
data to be transformed in 3D
space, either individually or col-
lectively, as models and polygonal
shapes.

The sample code in Listing 1
shows how View3D is programmed
in an application. It creates two 3D
cylinders and applies textures to
them using the TView3DMaterial
class. These cylinders are then ref-
erenced, using TView3DReference,
as individual children of a com-
bined parent object. Applying
transformations to each child
using TView3DPosition allows the
cylinders to move independently.
They are, at the same time, moved
collectively using the parent refer-
ence. Finally, TView3DRoute is used
with the parent reference to
control the motion of the ‘colle-
ctive’ model between pre-defined
waypoints (TView3DRouteWayPt).

ModelKit: The Application
ModelKit has two distinct func-
tions: one to allow the user to build

10 The Delphi Magazine Issue 34

Class Properties & Methods Types
TView3D property Ambient: (Ambient lighting) TView3DColor: (red, green, blue)

property Background: (Background color) TView3DColor: (red, green, blue)

property Cull: (Back shape culling) Boolean

property Eye: (Eye position) TView3DPosition: (x, y, z, roll, pitch, yaw)

property Fill: (Fill style) TView3DFill: (point, line, solid)

property Fog: (Fog effect) TView3DFog: (back, front, density, mode, state)

property Lights: (Lighting) TView3DLights: (azimuth, color, elevation, state)

property Shade: (Shading) TView3DShade: (flat, smooth)

property Size: (View window size) TView3DSize: (bottom, height, left, width)

property Volume: (View projection) TView3DVolume: (angle, back, front, projection, scale)

method AddReference: (Adds ref to view) PView3DReference: (model, position)

method Draw: (Draws the view)

method RemoveReference: (removes ref) PView3DReference: (model, position)

method GetBitmap: (returns view as bitmap) TBitmap

TView3DModel method Empty: (clears model object)

method AddPolygon: (adds a shape to the display list)

method AddLine: (adds a line to the display list)

method Smooth: (changes the shading characteristics)

TView3DRoute property Position: (waypoint position) TView3DPosition: (x, y, z, roll, pitch, yaw)

property Continuous: (route continually loops)

property Count: (number of waypoints)

property Period: (time from first to last waypoint)

property TimeBase: (used to shift the route period)

method Add: (adds a waypoint) TView3DRouteWayPt: (x, y, z, pitch, yaw, roll, speed)

method Clear: (clears all waypoints)

method Insert: (inserts a waypoint)

method Remove: (remove waypoint)

method Time: (time at waypoint) Cardinal

➤ Figure 1: Outline of View3D Class Structure

and apply controlled motion to 3D
‘scale’ models and the other to
allow the user to view these
models in real time.

It comprises a user interface
with drawing canvas, menu items
and speed buttons and has a
number of dialog forms which are
designed to set up and control
parameters relating to scaling and
3D viewing. These include calibra-
tion, lighting, materials, back-
ground color and fog effects.
Figure 2 shows ModelKit being
used to model a Spitfire aircraft.

The drawing canvas uses
Delphi’s comprehensive set of
built-in graphics functions which
are encapsulated in the TCanvas
object. The canvas analogy is easy
to program and includes the TBit-
map object for importing and

➤ Figure 2: ModelKit main form and dialog

12 The Delphi Magazine Issue 34

handling bitmaps on the canvas
drawing surface. ModelKit also
uses TBitmap to access textures
which are subsequently mapped in
real time using View3DMaterial
class.

The ModelKit software is
designed to provide a clearly
defined model building sequence.
This starts by importing scanned
bitmaps of plans or drawings and
displaying them on the canvas.
These are then scaled to calibrate
real world size with the drawing
area, and polygonal shapes based
on triangles and quadrilaterals are
superimposed on the bitmap to
construct the model shape. As this
all happens in 2D, heights have to
be entered separately to provide a
third ordinate. A snap-to facility
allows shapes to be bound
together with common points and
edges, like a web of triangular and
quadrilateral panels. The model
data structure comprises a list of
points which contain x, y and z
vertex information and a list of
shape definitions which reference
the points.

The drawing canvas is updated
by double buffering background
bitmaps. This works for most
drawing operations, but Delphi
MouseMove events for dragging
points and shapes around the
canvas are very slow and the XOR
drawing mode is used as a faster
alternative (third party compo-
nents are available to allow direct
access to the Windows frame
buffer and hence speed up these
events).

Additional dialogs comprise
panels, edit and combo boxes and
are used to edit color, texture and
lighting values. Other general pur-
pose tools which assist the user to
construct models are available as
menu items or speed buttons on
the ModelKit main form. They
include fencing, snap-to, zoom,
view selection, cut, copy, paste,
delete and file handling. A separate
3D graphics library supports these
utilities.

After constructing a model and
applying all of the lighting and tex-
ture effects, it remains to apply
position and motion transforms.
Waypoint properties are created

which allow models to follow spe-
cific routes in 3D space. These
properties define the 6 degrees of
freedom of any moving object: x, y,
z, yaw, pitch and roll. Waypoint
inputs are assigned to
TView3DRoute properties and class
methods are used to interpolate
position and attitude values
between the Waypoints in real time.

The final step in the sequence is
to visualize the ‘world’ as modelled
by the user. A visualize form is
added to the system and a View3D
component is placed on it. View3D
properties and methods allow the
previous dialog assignments
(material, lighting, fog etc) to be
inherited and rendered as a real
time display. A virtual mouse
facility is added to control eye
position and movement, or the eye
can be placed on a moving model.
The format of the visualize unit is
very similar to that of Listing 1.

ModelKit Data Structure
The ModelKit data structure is
based on a subset of VRML (Virtual
Reality Modeling Language.) This
format is designed for real time ani-
mation and is compatible with
internet browsers. The subset
includes list index definitions as
specified in the VRML Coordinate3
and IndexedFaceSet nodes. Model-
Kit is designed to build objects of
any shape and in this context all
the predefined shapes part of
VRML is ignored. Nevertheless,
ModelKit output can be displayed
on or off the internet using a
browser (with a VRML plugin), but
ModelKit can only read VRML files
which it creates.

Until now, we have dealt with a
two element data hierarchy:
models and polygonal shapes.
VRML introduces a third element,
the group. Group nodes are collec-
tions of shapes which form some
common part of a model. In the
Spitfire example, over 800 shapes
are used to create the model air-
craft. These are divided into 19
groups, one of which represents
the propeller, another the canopy,
a third the pilot, etc. The inclusion
of groups in the ModelKit data
structure allows a model to be
broken up into logical parts,

making modelling easier for the
user and also isolating those parts
which may be subject to separate
transformations (eg the propeller
or the wheels.) If we look back to
Listing 1 and replace the child ref-
erences with Spitfire model groups
and the parent with the complete
Spitfire model, then the parent air-
craft would be ‘flown’ in 3D space
whilst rotating the propeller
group, lowering and raising wheel
groups, etc. Figure 3 shows the
example model with texture cam-
ouflage, transparent cockpit, light-
ing and fog effects. Figure 4
illustrates the use of the
TView3DRoute class, with the Spit-
fire moving between specified
waypoints. Although the model is a
realistic representation of a Spit-
fire, the average update rate on a
100MHz Pentium PC is about 3
frames/sec. This results in very
jerky interpolated motion as the
aircraft follows its waypoints.
Improvements could be made by
the modeler by reducing the
number of polygons in the model,
or using a more powerful PC.

ModelKit currently handles 10
models, each with 20 groups of
shapes. This allows complete
worlds to be simulated: terrain,
buildings, aircraft, etc. It could
also be used for more abstract
work such as commercial advertis-
ing, design or art. These worlds are
stored in VRML inline files which
comprise a list of all the individual
model filenames in the world. In
this way the user doesn’t have to
load a world file by file, but still has
the option to load individual
models if required. All files are
saved as VRML .wrl types.

Development Problems
We use both Windows 95 and NT
for software development, with
their respective OpenGL DLLs.
Windows 95 runs out of memory
and becomes unstable when larger
model objects are declared. First
indications of this problem are
intermittent loss of picture on the
visualize form. An intermittent
invalid access exception also

➤ Facing page: Listing 1

June 1998 The Delphi Magazine 13

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ExtCtrls, View3D, Mat3D, Model3D, Math3D,
Ref3D, Route3D, Text3D;

const
CylinderRadius : Single = 10.0;
CylinderHeight : Single = 20.0;

type
TForm1 = class(TForm)
View3D1 : TView3D;
Timer1 : TTimer;
procedure FormCreate(Sender: TObject);
procedure FormMouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

procedure FormDestroy(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure FormPaint(Sender: TObject);
procedure Timer1Timer(Sender: TObject);
private
procedure ConstructCylinder;
procedure ConstructRoute;
procedure Draw;
procedure LoadTextures;

public
child1 : TView3DReference;
child2 : TView3DReference;
material : array [0..11] of TView3DMaterial;
model : TView3DModel;
parent : TView3DReference;
radius : Single;
texture : array[0..5] of TView3DTexture;
route : TView3DRoute;
time : Single;

end;
var
Form1 : TForm1;

implementation
{$R *.DFM}
procedure TForm1.Draw;
begin
View3D1.Draw;

end;
procedure TForm1.FormCreate(Sender: TObject);
{ construct the view, called when the form is created }
begin
model := TView3DModel.Create;
parent := TView3DReference.Create;
child1 := TView3DReference.Create;
child2 := TView3DReference.Create;
child1.Model := @model;
child2.Model := @model;
child1.Position.X := CylinderRadius;
child2.Position.X := -CylinderRadius;
parent.Add(@child1);
parent.Add(@child2);
LoadTextures();
ConstructCylinder();
{ === calculate polygon vertex normals === }
model.Smooth(-180.0, 0.0001);
View3D1.AddReference(@parent);
{ === initialise eye radius === }
radius := Sqrt(View3D1.Eye.X * View3D1.Eye.X +

View3D1.Eye.Y * View3D1.Eye.Y +
View3D1.Eye.Z * View3D1.Eye.Z);

ConstructRoute();
end;
procedure TForm1.LoadTextures();
var
bitmap : TBitmap;
i : Integer;
name : TFileName;

begin
name := 'textureX.bmp';
bitmap := TBitmap.Create;
for i := 0 to 5 do begin
name[8] := Char(i + Integer('1'));
texture[i] := TView3DTexture.Create;
bitmap.LoadFromFile(name);
texture[i].Bitmap := bitmap;
texture[i].Quality := Low;
texture[i].Combine := Modulate;

end;
end;
procedure TForm1.ConstructCylinder();
{ construct a 12-sided cylinder }
var
angle : Single;
i : Integer;
pt : array [0..23] of TView3DPoint3;
vertex : array [0..3] of TView3DVertex;

begin
for i := 0 to 11 do begin
angle := i * 2.0 * Pi / 12;
pt[i].x := CylinderRadius * Sin(angle);
pt[i].y := -CylinderHeight;
pt[i].z := CylinderRadius * Cos(angle);
pt[i + 12].x := pt[i].x;
pt[i + 12].y := CylinderHeight;
pt[i + 12].z := pt[i].z;

end;
for i := 0 to 11 do begin
material[i] := TView3DMaterial.Create;
material[i].Diffuse.Red := 255;
material[i].Diffuse.Green := 255;
material[i].Diffuse.Blue := 255;
material[i].texture := @texture[i mod 6];
vertex[0].point := pt[i];
vertex[0].texture.x := 0.0;
vertex[0].texture.y := 0.0;
vertex[1].point := pt[(i + 1) mod 12];
vertex[1].texture.x := 1.0;
vertex[1].texture.y := 0.0;
vertex[2].point := pt[(i + 1) mod 12 + 12];
vertex[2].texture.x := 1.0;
vertex[2].texture.y := 1.0;
vertex[3].point := pt[i + 12];
vertex[3].texture.x := 0.0;
vertex[3].texture.y := 1.0;
model.AddPolygon(vertex[0], vertex[1], vertex[2],
@material[i]);

model.AddPolygon(vertex[0], vertex[2], vertex[3],
@material[i]);

end;
end;
procedure TForm1.ConstructRoute();
{ construct a simple route }
var
w : array[0..3] of TView3DRouteWayPt;

begin
route := TView3DRoute.Create;
w[0].x := -50.0;
w[0].y := 0.0;
w[0].z := 0.0;
w[0].pitch := 0.0;
w[0].yaw := 0.0;
w[0].roll := 0.0;
w[0].speed := 25.0;
{ ** CODE OMITTED for w[1] to w[3] : SEE DISK ** }
route.Add(w[0]);
route.Add(w[1]);
route.Add(w[2]);
route.Add(w[3]);
route.continuous := True; { set route to auto-loop }
time := 0.0;

end;
procedure TForm1.FormMouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

{ change eye point depending on mouse position }
var
lat : Single;
long : Single;

begin
View3D1.Eye.Yaw :=
(X - ClientWidth / 2) / ClientWidth * 360.0;

View3D1.Eye.Pitch :=
(Y - ClientHeight / 2) / ClientHeight * 180.0;

{ calculate x, y and z values }
long := DegToRad(View3D1.Eye.Yaw) + Pi;
lat := DegToRad(View3D1.Eye.Pitch);
View3D1.Eye.X := radius * Sin(long) * Cos(lat);
View3D1.Eye.Y := radius * Sin(lat);
View3D1.Eye.Z := radius * Cos(long) * Cos(lat);

end;
procedure TForm1.FormDestroy(Sender: TObject);
var
i : Integer;

begin
model.Empty;
model.Destroy;
parent.Destroy;
child1.Destroy;
child2.Destroy;
for i := 0 to 5 do begin
texture[i].Destroy;

end;
for i := 0 to 11 do begin
material[i].Destroy;

end;
route.Destroy;

end;
procedure TForm1.FormResize(Sender: TObject);
begin
View3D1.Size.Width := ClientWidth;
View3D1.Size.Height := ClientHeight;
Draw;

end;
procedure TForm1.FormPaint(Sender: TObject);
begin
Draw;

end;
procedure TForm1.Timer1Timer(Sender: TObject);
begin
child1.Position.Pitch := child1.Position.Pitch + 10.0;
child2.Position.Yaw := child2.Position.Yaw - 10.0;
route.Evaluate(time);
time := time + 0.1;
parent.Position := route.Position;
Draw();

end;
end.

14 The Delphi Magazine Issue 34

occurs when running OpenGL code
in the Delphi IDE with the inte-
grated debugger turned on. Turn it
off and this problem disappears!
This is an annoyance rather than a
hindrance and, although neither
ourselves nor Borland Assist could
find a solution to the problem, it
did not significantly affect the
development timeframe. As yet, we
have had no memory or debugger
problems with NT and we’d
recommend NT for larger projects.

We have noticed a problem with
OpenGL when using the fog effect.
If a model is clipped against the
side of the display the surfaces
which are being clipped turn com-
pletely white. This has been
observed in a number of graphics
systems which use OpenGL and
seems to be present in even the
latest versions of the library.

Real Time Application
Real time 3D imagery is currently
used in applications which require
user interaction. Typical examples
are training simulators or games,
where a feedback loop exists
between user control inputs and
the displayed imagery.

The quality of real time 3D graph-
ics will improve as PC processors
and memory get faster, and better

3D graphics cards emerge. We
believe that this improvement will
be reflected in the popularity and
use of the technology, particularly
in markets like education and IT.

The View3D component is being
marketed by AiG Limited as a
Delphi 3 developer tool. The com-
ponent approach has allowed far
greater flexibility than with an
application. The good news is that
a trial version of View3D is
included on this month’s compan-
ion disk, in the VIEW3D directory.

ModelKit is still being developed
and will complement View3D as a
PC-based 3D modeling and visuali-
zation tool when released later this
year. Versions of View3D will have a
data reader which will allow

models that have been created in
ModelKit to be read directly into
an application.

Information on both products
can be found at www.aignet.co.uk

Ian Ringrose has 15 years experi-
ence in real time 3D graphics. He
has a PhD in computer simulation
and is a Chartered Engineer.
Joseph Steel has a degree in
applied mathematics with 12
years experience as a real time
graphics programmer and ana-
lyst. They both consult for AiG
Limited on projects relating to
computer graphics and can be
contacted via info@aignet.co.uk

➤ Left, Figure 3: Spitfire with
textures, transparency and fog

➤ Right, Figure 4: Interpolated
positions derived from
waypoints

	Development Decisions
	View3D Component
	ModelKit: The Application
	ModelKit Data Structure
	Development Problems
	Real Time Application

